D Kongruänz in dr Zaaletheorii
D Kongruänz in dr Zaaletheorii isch e Beziejig zwüsche ganze Zaale. Mä bezäichnet zwäi Zaale as kongruänt in Bezuug uf e Modul (e dritti Zaal), wenn si bi dr Divisioon dur e Modul dr gliich Räst häi. Das isch genau denn dr Fall, wenn si sich um e ganzzaaligs Vilfachs vom Modul underschäide. Si d Räst nit gliich, so säit mä, d Zaale sige inkongruänt in Bezuug uf e Modul.
Zum Bischbil isch 5 kongruänt 11 modulo 3, wil und , bzw. . Und −8 isch kongruänt zu 10 modulo 6, denn bi dr Divisioon dur 6 liifere 10 und au −8 dr Räst 4. Mä säll acht gee, ass es uf dr mathematischi Definizioon vo dr Ganzzaaldivisioon basiert, wo noch ere dr Räst s gliiche Vorzäiche überchunnt wie dr Divisor (do 6), also .
D Ussaag „ und si kongruänt modulo “ schribt mä mathematisch eso:
- .
D Bedütig vo Kongruänze bestoot din, ass mä mit iine fast wie mit Gliichige cha rächne.
Dä Artikel basiert uff ere fräie Übersetzig vum Artikel „Kongruenz_(Zahlentheorie)“ vu de dütsche Wikipedia. E Liste vu de Autore un Versione isch do z finde. |